M
MJJ Tools

Partial Derivative Calculator

Calculate partial derivatives of multivariable functions with detailed step-by-step solutions supporting polynomial, trigonometric, exponential, and logarithmic functions

Function and Variable

Supported: +, -, *, ^, sin(), cos(), tan(), ln(), e^x, variables x, y, z

Partial Derivative Rules

Basic Rules

  • • Constant Rule: ∂/∂x[c] = 0
  • • Power Rule: ∂/∂x[x^n] = nx^(n-1)
  • • Sum Rule: ∂/∂x[f + g] = ∂f/∂x + ∂g/∂x
  • • Product Rule: ∂/∂x[fg] = f·∂g/∂x + g·∂f/∂x

Common Functions

  • • ∂/∂x[sin(x)] = cos(x)
  • • ∂/∂x[cos(x)] = -sin(x)
  • • ∂/∂x[e^x] = e^x
  • • ∂/∂x[ln(x)] = 1/x

Usage Tips

Use ^ for exponents: x^2, y^3

Use * for multiplication: 2*x*y

Treat other variables as constants

Use parentheses for complex expressions

Supports basic trigonometric and exponential functions

Examples

Basic Examples

∂/∂x[x²] = 2x
∂/∂x[xy] = y
∂/∂y[x²y³] = 3x²y²
∂/∂x[sin(x)] = cos(x)

Advanced Examples

∂/∂x[x²+y²] = 2x
∂/∂y[x²+y²] = 2y
∂/∂x[e^x·y] = e^x·y
∂/∂x[ln(x)+y²] = 1/x